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Abstract—The series solution of the one-dimensional freezing problem has been found for the case that
Newton's law of cooling holds at the fixed boundary. Using a method due to Portnov the position of the
progressing phase-change front has been obtained by a series expansion in powers of \/t. The coefficients
up to the power n = 8 are given. The formulae have been applied to an example. An estimate for the

truncation error as a function of a dimensionless parameter has been obtained.

NOMENCLATURE

exterior conductivity
[cal/cm? s °C];
thermal conductivity
[cal/cms°C];
thermal diffusivity [cm?/s];
latent heat [cal/g];
reference temperature(= 1°C);
temperature of solidification
[*Cl:
=T, - 1[C];
time [s];
ambient temperature [°C];
(U - T)/ T,
coefficients in the power series
expansion of the ambient tem-
perature;
temperature function in the
solid [°C];
=V - T)T;
= ¢1K/H)/Ty;
= ¢2(K/HY'/ Ty ;
location of interface [cm];
coefficients in the power series
expansion of the interface loca-
tion ;

* B.I1.O. Contribution No. 34.
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X, space co-ordinate [cm];
¥V, variable of integration.

Greek symbols

¢ XH/K;

s coefficients in the power-series
expansion of &;

n, 2kp L/KTy;

9, 2,/(kt) [em];

0, [2H./(k)}/K;

P density [g/cm?];

g xH/K;

Ps X/9;

& (w), P,(w), fictitious temperature func-
tions;

Dins Pom coefficients in the power-series
expansion of @, and @,.

INTRODUCTION

THE PROBLEM of heat conduction through a
solid in the presence of a change of phase was
formulated by Stefan in 1889 [1]. Assuming a
water mass to be at the temperature of solidifica-
tion he found, stipulating the temperature at
the surface, the position of the moving boundary
(freezing line) using an approximate method.
The exact solution for the above case was
given by Neumann [2].



196

Problems of this type are non-linear because
they involve a boundary whose position is not
known a priori. Therefore one cannot obtain
solutions for other boundary conditions by
superimposing Neumann solutions.

For this reason a great number of investiga-
tors, in particular those dealing with problems
which arise in aerospace science have concen-
trated their efforts on numerical methods
[3-6]. An entirely different approach has been
taken by Goodman [7] who utilized the heat-
balance integral in order to solve problems in
heat conduction involving a change of phase.

Using a power series expansion in time,
Evans et al. [8] have attempted to solve the
problem of freezing under the assumption that
at the fixed boundary the heat flux is a pre-
scribed function of time.

Recently Stephan [9] has attempted to solve
the freezing problem under the assumption of
a radiation boundary condition (= Newton'’s
law of cooling) by superimposing Neumann
solutions.

In 1962 Portnov [10] suggested a method
which made it possible to solve problems in
heat conduction involving a change of phase
with more involved boundary conditions at
the fixed boundary. Jackson [11] has examined
the theory of the method in detail and has
applied it to various problems in connexion
with the melting and the solidification of
finite slabs.

In this work the method due to Portnov has
been applied to the problem of finding the
location of the progressing phase-change front
under the assumption that the radiation bound-
ary condition has been imposed at the fixed
surface.

FORMULATION

Consider a liquid filling the space from
x = 0, which we take to be the fixed boundary,
to x = — o0. Assuming that the phase-change
front has progressed to x = X(t), the one-
dimensional differential equation of heat con-
duction must hold in the solidified material, i.e.
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where V(x,t) is the temperature function and
k the constant of thermal diffusion. Since we
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x<o Phase Change Front.
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assume that the liquid originally filling the
space is at the constant temperature of solidifica-
tion, only one equation of type (1) is required.

At the fixed boundary we impose the radiation
boundary condition

—Kaa—V—H[V U] (2)

where H is the exterior conductivity and K the
thermal conductivity. In equation (2) we have
assumed that the temperature of the ambient
air is an arbitrary function of time.

At the moving boundary, the temperature is
always at the solidification temperature T,;
therefore

VIX(@.t] = T, 3)

When the liquid solidifies the latent heat
is set free; therefore
ov
K—=pL—
ax P
where p is the density of the liquid and L is
the latent heat of the solidifying material.
As an initial condition we stipulate that at
the beginning there is no solid part, i.e.

X0 =20 (5

Equations (1-5) constitute the formulation
of the problem which we desire to solve by
applying the method of Portnov.

X = X(1) (4)
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SOLUTION
Portnov obtains a formal solution of equation (1) without satisfying any boundary condition, viz:

by 2 NV X
Vix, t)y = \%j‘{exp [— X—("%—oi]} @,(Xy)§ dy
[1]

1]
1 XY x/X - y)? X
+ Jn J {GXP [— —-Q-C%z—y){l} PAXy) 5 dy (6)

where 8 = 2(,/kt). The functions @,(w), ®,(w) and X(t) are unknown and have to be determined
using the boundary and initial conditions (2-5).

Jackson [11] has shown that V(x, t) defined by (6) is, under suitable restrictions on the functions
P,(w), D,(w) and X(¢), a solution of the heat-conduction equation (1).

In order to determine the three unknown functions @,(w), ,(w) and X{¢), one assumes that these
functions and the ambient temperature U(t) can be expanded in power series, i.e.

D) = 3, $u0" (7a)
230) = 3, dau0" (7b)
X(9) = iX 3 (Tc)
() = 2 U, (7d)

where expansion (7¢) already satisfies the initial condition (5).
Substituting (6) into the boundary condition (2) gives

(V7 IHU) = 2K [[1Bexp(~BP) 0,898 + | (Bexp () @.(89)df]

w0 0
+ HI[ 05 {exp(—$°)} @,(B)df + | {exp(—p)} &,(59)dp] 8)
-0
where f is defined by
X1~ yy?
= ——————92 .
To obtain a relation between the coefficients ¢,,, ¢,,. X, and U, we substitute the expansions
{(7) into (8). Letting 3 tend towards zero, gives

$10 — $20 = 0. (10
Substituting (6) into the boundary condition (3) gives

B )

® —X(3)/9
T, = (1/y/) [_Xé;)!& {exp (=P} 2,83 + X)df + | {exp(—p)} 0,89 + X)dB]. (1)

— o

Introducing the expansions (7) into equation (11) and letting $ tend towards zero finally gives

10 = b0 =T,. (12)
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In order to obtain one more equation for determining the first three coefficients ¢, . ¢,, and
X |, we substitute (6) into the boundary condition (4),
X

2kpL(dX/d9) = 2K/\/7) {_ng {Bexp(—pH} &,(BS + X)dp

- X($)/8

+ | {Bexp(—pH} 0,89 + X)dB]. (13)

-

On substituting into (13) the expansions (7), we obtain, on letting & tend to zero,
2kpLX, = (K/\/Tf) {10 = P20} exp(~ X1)
or because of (12)
X, =0. (14)

In order to obtain the coefficients ¢, ;, ¢, and X, in the power-series expansions (7), we take the
first derivative of (8), {11) and (13) with respect to 3. Substituting the expansions (7) into the equa-
tions and letting 3 tend to zero, we obtain after the evaluation of the definite integrals three equations
from which the coefficients can be determined.

The first derivative of (8) with respect to 3 is

(Vm H{U®) + SUVY)} = 2K [T {B* exp(— %)} (B dB
0

+

(87 exp (~ ) 69 48] + B[ exp (=420} @B B + | {exp (— 7] 00631 df]

BC—;O

— 5

+ I (Bexp(~§0) OB AP + | 1 exp (=)} 24 (58) ]

where ®{V(83) and P4(B9) are the first derivatives of the functions with respect to their arguments.
On substituting the expansions (7) into the last equation we obtain finally

2H
b1y + P2 Z‘I‘(’*(Uo—Ts)- {15)
The first derivative of (11) with respect to 3 is
= (1/ym[ | {exp(—B2} (B + X'O). BB + X)df + () exp (=37} 84(0)
-7

+ T {exp (=B} (B + XU GO(BY + X)dB — (1D exp (=97} @,(0)]

where y = X(9)/9. On substituting the expansions (7) into the above equation and letting 3 tend
to zero, we obtain after evaluating the integrals

b1 — P21 =0 (16)
Performing the same steps as above on (13) gives
_ K¢,

2 4kpL
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which by virtue of (15) and (16) may be written as

_H(U, - T)

- 17
X2 4kpL {an

which is always negative since U, < T.

In order to obtain the higher-order coefficients, we continue in the manner described above,
that is, we take the higher-order derivatives of equations (8), (11) and (13), let 3 tend to zero and
evaluate the integrals. From the resulting three equations we obtain the unknown coefficients
@1 02, and X, . where n is the order of the derivatives.

Since it is desirable to reduce the number of parameters in the coefficients ¢,,, ¢,, and X, .,
as much as possible, we introduce the following dimensionless quantities:

f=%X; 0=2%\/kt (18a)
_H _ 2kpL
‘=K% T KT (180)
o0 = =T e = ST (180)
0

with T} = Ts — 1°C and T, = 1°C. These quantities have been introduced into the coefficients
@ 1n P2, and X, . The resulting dimensionless coefficients v,,, v,, and &,,; have been listed in
Appendix A.

THE TEMPERATURE OF THE SURFACE

The temperature at the fixed surface, i.e. at { = 0, for 8 = 0 is given by the dimensionless form
of equation (6)

© 0
v(0, 0) = (1/y/7) [(! {exp(—p*)} v,(BO)dp + _fm {exp (— B%)} v,(86) dB]. (19)

Substitution of the power-series expansion of v,(86) and v,(B6) into the above equation gives after
rearranging and evaluating the integrals

1 3
(0, 0) = % {(\/ﬂ?) + 3(v1; — v2,)0 + ‘\?(012 + 032007 + Hvys — 0,50 + %(014 + v,4)0*
15 /=
+ (015 - Uzs)os + 1\6/ (1.715 + 1726)06 + 3(1.717 - 027)07 + .. } . (20)

Putting v,, = v,, which is the case if the ambient temperature is a function of ¢ rather than Jt
we obtain

u(0,0)=1+%02+%04+%06+... 1)

where the v,, are the coefficients listed in the Appendix.
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APPLICATION TO AN EXAMPLE

In order to apply the derived formulae to an example we assume that the solidifying medium
extends infinitely in both horizontal directions as well as infinitely downwards from x = 0. Given a
specific ambient temperature which must be expandable as a power series in the square root of
time we are able to compute the position of the interface as a function of time.

Apart from the coefficients of the power series expansion of the ambient temperature the only
dimensionless parameter which enters the formulae of Appendix A is . Selecting water as a solidify-
ing medium 5 becomes approximately 350.

Using a digital computer of the type I.B.M. 1620 the formulae of Appendix A were evaluated
for four different constant ambient temperatures u,. Using the coefficients &,, the position of the
phase-change front has been calculated from the dimensionless form of the power-series expansion
(7c). The result of this computation has been plotted in Fig. 2.
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F1G. 2. Thickness of solidified material vs. 8 (constant ambient temperature).

DISCUSSION

In Fig. 2 we have plotted the dimensionless location ¢ of the phase-change front against the
dimensionless variable 6. The four curves in Fig. 2 correspond to four temperature differences, AT,
between the temperature of solidification and the ambient temperature.

Since the coefficient &, is identically zero, the phase-change front begins to move with a finite
velocity (the velocity is obtained by multiplying the quantity d&/6 df by 2kH/K). As one may expect
the rate of growth is greatest at the very beginning and it falls off as the thickness increases. Taking
a difference of 20 degC between the ambient and solidification temperature the quantity d£/0 df
becomes 0-0571. Assuming an emissivity of the ice surface of 0-9 the constant H takes a value of
771 x 1073 (c.g.s.) where the ambient temperature was taken to 250°K {12]. With that value the
velocity of the phase-change front at the beginning becomes 1:65 cm/day which is obviously too
low. Since the relationship between H and the rate of growth is linear, one can easily adjust H in
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order to make the rate of growth at the beginning fit the experimental results. Therefore, in our
case, if we assume that the rate of growth at a temperature difference of 20 degC is initially five times
as large as quoted above, one finds that H = 3-86 x 107 (c.gs.).

Using the method of the heat-balance integral Goodman [7] has obtained an approximate
solution for the case which has been studied here. Assuming the temperature distribution within
the solid to be parabolic rather than linear [7], he obtains the time as a function of the position of
the phase-change front, i.e.

T= T%E [{(1 + 2B+ 2 + PSH{1 + BSQ2 + S)}F
-1 {[1 +BS@ + S+ [0 + S)ﬁ]*}
VB 1+ (B
_app— l)ln{_ 1+p2+8)+[1 +ﬁS(2+S)]*}
2p
2
+ (B + 5,8)87 + 2Ap* + 48— 2)S — (1 + 2/3)] (22)
where the quantities S, § and T are connected with the variables used in this paper as follows:
T=92{u0—11’ S=_¢ )8=1+4{u0——1{. 23)
2n

Since it would not be feasible to invert equation (22) we have substituted the location of the
phase-change front as obtained from the above developed method into the right-hand side of
equation (22).

In Table 1 we have shown the numerical values of £ in connexion with the corresponding 6.
Substituting £ into equations (22) and (23) one obtains §,. Taking the case for which n = 350 and

AT = — 10 one notices the agreement between the values of 6 and 6,.
Table 1
6 4 8,
o5 0-3565 x 1072 0501
1-0 01418 x 107! 1:002
15 03161 x 1071 1-503
20 05562 x 107! 2:004
25 08543 x 10~! 2:505
30 0-1208 3-005
35 01611 3504
40 0-2056 4-004
45 02534 4503
50 03028 5002

One of the features of the method was that the position of the phase-change front has been
expanded in a power series in powers of § with the coefficients £, being of alternating sign. This
fact enables us to estimate the error which we commit if terms with the power higher than eight in
0 are left out. Putting & = 1 we have plotted in Fig. 3 the ratio of 6898 to £ as a function of 5 for a
number of temperature differences, AT. The truncation error in this case is less than 0-002 per cent.
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FiG. 3. Relative truncation error for 0 = 1 vs. 5.

Increasing 6 to 6§ = 4 preserves the form of the curves but the truncation error now increases to

less than 1-2 per cent.

Remembering that the parameter » which for materials other than water (i.e. steel, aluminium)
assumes values in the range 800-1000, one concludes that the analysis is not confined to materials
with high latent heat, and that the eight terms represent a good approximation of the converging

power series for &,
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APPENDIX A
V1o = U9 = 1

=0

Uiy + 0y = 2ug — 1)

U3 — U =0

_tu
L=

Uyp — U323 = (\/n)lh
Uiz + U3 = — 285(01y + vyy)

Uiz — Us
'53 =

TN

4u, — +
013+023={ 2 (U;Z 022)}

Uz — U3 = — {53 (\/7'5)(”11 + v31) + 2&5(vy, — Uzz)}
Eo = (1/12n) {3&,(vy, + v33) + 2:25(vy3 + v53)}

Dys — Dy = {2(\/7‘) Us _4(1’13 - 1723)}
4, (\/7'5)(1)11 + 1) + 8¢53(v1, — vy;) + 64, (\/7'5)(”13 + v,3) + 4¢3 (\/”)(012 + 032)
3/
_ &3 (\/”)(012 + 035) + 3&,(vy3 — v33) + E3(v12 — V32) + 2vy4 — V24
5(Jmn

Vig + V24 = —

¢s

8u, — vy + vy4)
U15+U25={ 2 1;4 24}
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1
ﬁ‘{6§5 (\/7[)(”11 + 0y1) + 1284(vy; — vy5) + 953(\/71)@13 + 033)

+ 2485(vy4 — v34) + 128,85 (\/n)(uxz + U32) + 188305 — vy3) + 4830y, — v1)}

Uis — Ups = —

1
$e = m 8¢, (\/75)(”12 + v22) + 2485(v13 — v53) + 24L, (\/n)(vm + v34)

+ 16E,85(vy, — vy,) + 1283 (\/7[)(013 + vy3) + 15(\/775)(1715 + vys)}

Die — Uy :{“5 (\/n) “6(1715 - UZS)}

1
Uig + Uze = — E:/—n{séé (\/n)(vn + va1) + 1685(v1, — v3,) + 128, (\/7'5)(”13 + v23)
+ 3283(v14 — v24) + 30¢, (\/75)(”15 + vy5) + 166,84 (\/7'5)(“12 + v3,) + 488,85(vy3 — v23)
+ 24¢3 (\/n)(vm + vy4) + 883 (\/7'5)(”12 + vy,) + 883 (\/”)(1713 + 0y3) + 8&5&5(vy, — v3))}
1
Cy = 2(Jm)n {65 (Jm)v1a + va5) + 18E4(vy5 — vy35) + 185 (V)14 + 034) + 60E,(vy5 — vy5)

+ 128,840y, — vp5) + 188,85 (\/75)(1’13 + Uy3) + 3683014 — v34) + 683(vy, — v52)
+ 68313 — va3) + 36(0;6 — Uy6) — E3(vy, — U22)}

16ug — 15(v,6 + UZG)}

Uyg + Uy = { 105

Uy7 = U7 = — %){6057 (Wm11 + 031) + 12084(v,5 — 055) + 905 (V13 + v33)
+ 2408,4(v14 — 024) + 22583 (JM)(v15 + V35) + T20E5(v16 — Va6) + 120885 ()15 + v23)
+ 3608584013 — va3) + 360858, (\/Tf)(vm + vy4) + 600&,(vy5 — vy5)
+ 1208584 (\/W)(Ulz + v,,) + 180£3¢, (\/7'5)(013 + vy3) + 180&5(vy 3 — v,3)
+ 24083014 — vp4) + 1208,85(v1, — v5) + 120858,(vy, — vy5) — 483V, — 123)
+ 3085(v13 — va3)}

$g = ;{16866 (\/77)(“12 + v3,) + S04L5(v 5 — vy3) + 504E, (\/n)(vm + Uz4)
1344 (Jm) 1y

+ 168085(v;5 — vy5) + 1890&, (M)(vys + 26) + 336E285(v1, — v32)

+ 504¢,¢, (\/n)(vl3 + 033) + 2016£,85(v14 — vy4) + 126083 (\/n)(vxs + v35)

+ 336838401 — v33) + S04E3E5(v15 — v53) + 25285 (YM)(wy3 + v23) + 33683 ((M(014 + v34)
+ 11025 (\/7'5)(”17 + Uy9) — 11283¢5(vy, — v;5) — 244830y — r23)}



SERIES SOLUTION OF FREEZING PROBLEM

Résumé— La solution en série du probléme de la congélation unidimensionnelle a été trouvée dans le cas

ol la loi de refroidissement de Newton est valable sur la frontiére fixe. En utilisant une méthode due &

Portnov, on a obtenu la position mobile du front de changement de phase sous la forme de développement

en série de puissances de \/ t. Les coefficients jusqu'a la puissance n = 8 sont donnés. Les formules ont

été appliquées a un exemple. Une estimation de I’erreur de troncature en fonction d’'un paramétre sans
dimensions a été obtenue.

Zusammenfassung—Dic Reihenl6sung firr das eindimensionale Gefrierproblem liess sich fiir den Fall

finden, dass Newton’s Abkiihlungsgesetz fiir die feste Berandung gilt. Nach einer Methode von Portnov

kann der Ort der fortschreitenden Front der Phasendnderung durch eine Reihenentwicklung nach Potenzen

von ./t erhalten werden. Die Koeffizienten bis zur Potenz n = 8 sind angegeben. Die Formeln wurden

fiir ein Beispiel angewandt. Eine Abschitzung fiir den Abbruchfehler wurde als Funktion eines dimensions-
losen Parameters erhalten.

Annoramua—IIlonyueHo pelienue B BUJle CTEIEHHOTO PANA OXHOMEepHOH 3aaun KA ciydas,
Korpa 3akoH HbIOTOHA ANIA OXJaKIEHMA COpaBeNJIMB HAa HEemOBIKHOM rpaHune. Pac-
npocTpaHeHne QpOHTA N3MeHeHUA a3kl MOJYyYeHO B BUAE CTENIEHHOTO PANA IO CTeNeHAM 4/ ¢
no merony Ilopruosa. IlpuBopArca koadduuMeHTH 4NeHOB €O creneHwio 7o n = 8. ITpu-
MeHeHHre OPMYJ NPOMILIIOCTPUPOBaHO NpuMepaMu. [lonydeHa oleHKa OWUGKU BCIEACTBUH
0TOPACBIBAHMA YJIEHOB B 3aBUCUMOCTU OT (e3pa3MepHOro InapaMerpa.
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