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A-et-The series solution of the one-dimensional freezing problem has been found for the case that 
Newton’s law of cooling holds at the tixed boundary. Using a method due to Portnov the position of the 
progressing phase-change front has been obtained by a series expansion in powers of Jt. The coelkients 
up to the power n = 8 are given. The formulae have been applied to an example. An estimate for the 

truncation error as a function of a dimensionless parameter has been obtained. 
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NOMENCLATURE 

exterior conductivity 
[Cal/cm’ s “C] ; 

thermal conductivity 
[Cal/cm s “C] ; 

thermal diffusivity [cm’/s] ; 
latent heat [Cal/g] ; 
reference temperature( = 1°C); 
temperature of solidification 

[“Cl; 
= T,- 1 [“Cl; 
time [s] ; 
ambient temperature [“Cl ; 

(u - TXC,; 
coefhcients in the power series 
expansion of the ambient tem- 
perature ; 
temperature function in the 
solid [“Cl ; 

= (V - TJT,; 
= 4,,WIW’IT,; 
= 4z,WIW”IG ; 
location of interface [cm] ; 
coefficients in the power series 
expansion of the interface loca- 
tion ; 

* B.I.O. Contribution No. 34. 

X, space co-ordinate [cm] ; 

Y> variable of integration. 

Greek symbols 

iI> 

XHIK; 
coefficients in the power-series 
expansion of t ; 

6 2kp LIKT,; 

9, 2J(kt) [cm] ; 
6 [2HJ(kt)llK ; 
IA density [g/cm31 ; 

5, xH/K; 

Y, X/S ; 
Q1(w), Q2(w), fictitious temperature func- 

tions ; 

4lm 42n3 coefficients in the power-series 
expansion of @r and Q2. 

INTRODUCTION 

THE PROBLFM of heat conduction through a 
solid in the presence of a change of phase was 
formulated by Stefan in 1889 [l]. Assuming a 
water mass to be at the temperature of solidifica- 
tion he found, stipulating the temperature at 
the surface, the position of the moving boundary 
(freezing line) using an approximate method. 
The exact solution for the above case was 
given by Neumann [2]. 
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196 K. 0. WESTPHAL 

Problems of this type are non-linear because 
they involve a boundary whose position is not 

known a priori. Therefore one cannot obtain 
solutions for other boundary conditions by 
superimposing Neumann solutions. 

-&E f3V 

at ax2 (1) 

where V(x, t) is the temperature function and 
k the constant of thermal diffusion. Since we 

For this reason a great number of investiga- 
tors, in particular those dealing with problems 
which arise in aerospace science have concen- 
trated their efforts on numerical methods 
[336]. An entirely different approach has been 
taken by Goodman [7] who utilized the heat- 
balance integral in order to solve problems in 
heat conduction involving a change of phase. 

Ambient Air 

.;, .‘.,. ., ----~~1 :r”,,,, - - __’ --_‘_ 

Using a power series expansion in time, 
Evans et al. [8] have attempted to solve the 
problem of freezing under the assumption that 
at the fixed boundary the heat flux is a pre- 
scribed function of time. 

I Liquid Material \ 
Position of 

xc0 Phase Change Front. 

FIG. I. 

assume that the liquid originally filling the 
space is at the constant temperature of solidilica- 
tion, only one equation of type (1) is required. 

Recently Stephan [9] has attempted to solve 
the freezing problem under the assumption of 
a radiation boundary condition (= Newton’s 
law of cooling) by superimposing Neumann 
solutions. 

At the fixed boundary we impose the radiation 
boundary condition 

In 1962 Portnov [lo] suggested a method 
which made it possible to solve problems in 
heat conduction involving a change of phase 
with more involved boundary conditions at 
the fixed boundary. Jackson [ll] has examined 
the theory of the method in detail and has 
applied it to various problems in connexion 
wi!h the melting and the solidification of 
finite slabs. 

4: = H[V - U(t)] (2) 

where H is the exterior conductivity and K the 
thermal conductivity. In equation (2) we have 
assumed that the temperature of the ambient 
air is an arbitrary function of time. 

At the moving boundary, the temperature is 
always at the solidification temperature T, ; 
therefore 

In this work the method due to Portnov has 
been applied to the problem of finding the 
location of the progressing phase-change front 
under the assumption that the radiation bound- 
ary condition has been imposed at the fixed 
surface. 

V[X(t), t] = T,. (3) 

When the liquid solidifies the latent heat 
is set free ; therefore 

Kg = pLP x = X(t) (4) 

FORMULATION 

where p is the density of the liquid and L is 
the latent heat of the solidifying material. 

As an initial condition we stipulate that at 
the beginning there is no solid part, i.e. Consider a liquid filling the space from 

x = 0, which we take to be the fixed boundary, 
to x = - co. Assuming that the phase-change 
front has progressed to x = X(t), the one- 
dimensional differential equation of heat con- 
duction must hold in the solidified material, i.e. applying the method of Portnov. 

X(0) = 0. (5) 

Equations (l-5) constitute the formulation 
of the problem which we desire to solve by 
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SOLUTION 

Portnov obtains a formal solution of equation (1) without satisfying any boundary condition, viz: 

0 

+’ 
& @r,(Xy); dy (6) 

-a, 

where 9 = 2(&). The functions Grfo), at,(w) and X(t) are unknown and have to be determined 
using the boundary and initial conditions (2-5). 

Jackson [ll] has shown that V(x, t) defined by (6) is, under suitable restrictions on the functions 
@i(w), 4p2(o) and X(t), a solution of the heat-conduction equation (1). 

In order to determine the three unknown functions Qp,(w), Q2(o) and X(t), one assumes that these 
functions and the ambient temperature U(t) can be expanded in power series, i.e. 

(74 

(7b) 

(74 

(74 

where expansion (7~) already satisfies the initial condition (5). 
Substituting (6) into the boundary condition (2) gives 

Cd4 $HW) = 2K EriD exp (-PI”> @lUW W + s” (P exp t-P)‘> @#W 431 
-02 

where p is defined by 

fi’ _ X2(1 - Y12 
a2 . 

To obtain a relation between the coefficients &1n, &, X, and U, we substitute the expansions 
(7) into (8). Letting 9 tend towards zero, gives 

410 - 420 = 0. (10) 

Substituting (6) into the boundary condition (3) gives 

T, = (l!& c_~~~j,~ (exp (-O)*) @Us + X) da + -xr fexp t-P’)> Q2W + Xi Ml. (11) -a3 
Introducing the expansions (7) into equation (11) and letting 9 tend towards zero finally gives 

410 = (620 = T,* (12) 
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In order to obtain one more equation for determining the first three coefficients 410. &,, and 
X 1, we substitute (6) into the boundary condition (4), 

2kpL (dXid3) = (2K/,/7r) [ 7 {@ exp (- /3”)) @,(/33 + X) d@ 
-X($)/S 

-X(9)/3 
+ _J:i IBexp(-fi2)1%(&J + X)dfil. (13) 

On substituting into (13) the expansions (7). we obtain, on letting 3 tend to zero. 

2k&X, = W/,/n) C#I0 - (bzO) exp(-- X:) 

or because of (12) 

x, = 0. (14) 

In order to obtain the coefficients rpl I> #21 and X, in the power-series expansions (‘7) we take the 
first derivative of(S), (11) and (13) with respect to 9. Substituting the expansions (7) into the equa- 
tions and letting 9 tend to zero, we obtain after the evaluation of the definite integrals three equations 
from which the coefficients can be determined. 

The first derivative of (8) with respect to 9 is 

(,/‘rr) Nf U(S) + S~(‘)(S~~ = 2K [I {p” exp i-/Y”)] am’) dfi 

+ -1, {P’ exp C-P”)} @1’)UW WI + H Lf bw t--P’)> @l(B@ dP + f {exp ( - P2)i @2(B9) @I - zc 

+ H9 ET V exp t-P”)) am’) dP + ? {B exp (-@“I] am’) dB] 
0 -sx 

where @\‘)(pS) and @c,“(pS) are the first derivatives of the functions with respect to their arguments. 
On substituting the expansions (7) into the last equation we obtain finally 

(15) 

The first derivative of (11) with respect to S is 

0 = (l/Jn) [ 7 (exp (- p2)} (B + X’“) @p’l’)(pS + X) d/I + {y”’ exp (- 7”)) Q,(O) 
-7 

+ ItI {exp (- p”)> (p + X”‘). @$‘)(/A9 + X) d@ - {y(‘) exp (- y’)> c&(O)] 

where y = X(S)/S. On substituting the expansions (7) into the above equation and letting 3 tend 
to zero, we obtain after evaluating the integrals 

&I - 421 = 0. (16) 

Performing the same steps as above on (13) gives 
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which by virtue of (15) and (16) may be written as 

X 
2 

JWo- T,) 
4kpL 

(17) 

which is always negative since U,, < T,, 

In order to obtain the higher-order coefficients, we continue in the manner described above, 
that is, we take the higher-order derivatives of equations (8), (11) and (13), let 9 tend to zero and 
evaluate the integrals. From the resulting three equations we obtain the unknown coefficients 

4inY L and X,+ 1 where n is the order of the derivatives. 
Since it is desirable to reduce the number of parameters in the coefficients 41n, &2n and X,, 1 

as much as possible, we introduce the following dimensionless quantities : 

8=2gJkt (184 

WI 

a, e) = 
W, t) - q. u(t) - TI 

T > u(e) = 
0 

T 
0 

(18~) 

with Tl = T, - 1°C and To = 1°C. These quantities have been introduced into the coefficients 

L 42n and X,+i. The resulting dimensionless coefficients urn, vzn and l.+i have been listed in 
Appendix A. 

THE TEMPERATURE OF THE SURFACE 

The temperature at the fixed surface, i.e. at i = 0, for 8 > 0 is given by the dimensionless form 
of equation (6) 

u@,@ = (1IJ~)[~{exp(-p')}u,(pe)da + s" {expt-P2)}u2(fWdP]. 
0 -m 

(19) 

Substitution of the power-series expansion of ur(/30) and v,(jRI) into the above equation gives after 
rearranging and evaluating the integrals 

- vzl)e + $(v,, + uz2)e2 + $v13 - vz3)e3 + 3J’ 8h4 + uz4)e4 

+ h - de5 + 
15J72 
----~(v~~ + vz6)e6 + 3(~,, - u,,)e7 + . . . 16 (20) 

Putting uln = vzn 
we obtain 

which is the case if the ambient temperature is a function of t rather than Jt, 

~(0, e) = 1 + y e2 + ?$tp+ Te6 + . . . (21) 

where the urn are the coefficients listed in the Appendix. 
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APPLICATION TO AN EXAMPLE 

In order to apply the derived formulae to an example we assume that the solidifying medium 
extends infinitely in both horizontal directions as well as infinitely downwards from x = 0. Given a 
specific ambient temperature which must be expandable as a power series in the square root of 
time we are able to compute the position of the interface as a function of time. 

Apart from the coefficients of the power series expansion of the ambient temperature the only 
dimensionless parameter which enters the formulae of Appendix A is q. Selecting water as a solidify- 
ing medium q becomes approximately 350. 

Using a digital computer of the type I.B.M. 1620 the formulae of Appendix A were evaluated 
for four different constant ambient temperatures uO. Using the coefficients <,, the position of the 
phase-change front has been calculated from the dimensionless form of the power-series expansion 
(7~). The result of this computation has been plotted in Fig. 2. 

0 

-04 
‘AT= -5 

1 .^ I I I I 1’ tq=:m. I , 
” tu 2.0 30 40 

-0 

FIG. 2. Thickness of solidified material vs. 0 (constant ambient temperature) 

DISCUSSION 

In Fig. 2 we have plotted the dimensionless location 5 of the phase-change front against the 
dimensionless variable 8. The four curves in Fig. 2 correspond to four temperature differences, AT, 
between the temperature of solidification and the ambient temperature. 

Since the coefficient t1 is identically zero, the phase-change front begins to move with a finite 
velocity (the velocity is obtained by multiplying the quantity d</0 de by 2kH/K). As one may expect 
the rate of growth is greatest at the very beginning and it falls off as the thickness increases. Taking 
a difference of 20degC between the ambient and solidification temperature the quantity dQ0 de 
becomes O-0571. Assuming an emissivity of the ice surface of 0.9 the constant H takes a value of 
7.71 x 10m5 (c.g.s.) where the ambient temperature was taken to 250°K [12]. With that value the 
velocity of the phase-change front at the beginning becomes 1.65 cm/day which is obviously too 
low. Since the relationship between H and the rate of growth is linear, one can easily adjust H in 
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order to make the rate of growth at the beginning tit the experimental results. Therefore, in our 
case, if we assume that the rate of growth at a temperature difference of 20 degC is initially live times 
as large as quoted above, one finds that H = 3.86 x W4 (c.g.s.). 

Using the method of the heat-balance integral Goodman [7] has obtained an approximate 
solution for the case which has been studied here. Assuming the temperature distribution within 
the solid to be parabolic rather than linear [7], he obtains the time as a function of the position of 
the phase-change front, i.e. 

T = & 
[ 

((1 + 2/I) + (2 + P)s)({l + fiS(2 + S)>% 

2(8 1 I$* Cl + Ew + sp + cc1 + WI" 

-Jp 1 1 -i- JP I 
- 4/I@ - 1)ln 

1 

- 1 + /3(2 + S) + [l + &s(2 + S)]) 

28 1 

+ (P” + 5B) $ + 2@2 + 48 - 2)s - (1 + 28) 1 (22) 
where the quantities S, #I and T are connected with the variables used in this paper as follows : 

Since it would not be feasible to invert equation (22) we have substituted the location of the 
phase-change front as obtained from the above developed method into the right-hand side of 
equation (22). 

In Table 1 we have shown the numerical values of 5 in connexion with the corresponding 8. 
Substituting t into equations (22) and (23) one obtains 0,. Taking the case for which q = 350 and 
AT = - 10 one notices the agreement between the values of 8 and 8, 

Table 1 

0 r *s 

0.5 0.3565 x 1o-2 0.501 
1.0 0.1418 x 10-l la02 
1.5 0.3161 x 10-l 1.503 
2.0 05562 x 10-l 2.004 
2.5 0.8543 x lo- 1 2.505 
3.0 0.1208 3.005 
3.5 0.1611 394 
4.0 0.2056 4@04 
4.5 0.2534 4.503 
5.0 0.3028 5m2 

One of the features of the method was that the position of the phase-change front has been 
expanded in a power series in powers of 0 with the coefficients 5, being of alternating sign. This 
fact enables us to estimate the error which we commit if terms with the power higher than eight in 
0 are left out. Putting 8 = 1 we have plotted in Fig. 3 the ratio of <s8* to 5 as a function of q for a 
number of temperature differences, AT. The truncation error in this case is less than 0902 per cent. 
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10-6 AT=-20 

AT=-15 

. 
'AT=-5 

FIG. 3. Relative truncation error for 0 = 1 vs. 1. 

Increasing 8 to 8 = 4 preserves the form of the curves but the truncation error now increases to 
less than 1.2 per cent. 

Remembering that the parameter q which for materials other than water (i.e. steel, aluminium) 
assumes values in the range 800-1000, one concludes that the analysis is not confined to materials 
with high latent heat, and that the eight terms represent a good approximation of the converging 
power series for 4. 
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APPENDIX A 

Vl() = II20 = 1 

51 =o 

u12 - 022 = cJo1 

u12 + 022 = - 252hl + 021) 

(3 = u12 - 022 

3~1 Jn 

u13 + u23 = 
4u2 

u13 - u23 = - (53 ( JNU,, + ~21) + 252(~12 - u22,> 

t4 = (1112q) (352h2 + U22) + 2.25@,3 + u,,,} 

u14 - u24 = 
3 J7.4 u3 - (013 - u23) 

4 

_4(4(J 7~ u14 + u24 = )( UII + ~21) + 8<3(~12 - 022) + 6t2(J7~)(~13 + 023) + 4G (J7~Nv12 + ~22) 

3Jn 
55 = t3 (J7m12 + 022) + %2h3 - 023) + th2 - 022) + 2h4 - u24) 

5(J7h 

u15 + u25 = 
8~4 



204 K. 0. WESTPHAL 

’ ‘65, (4 VI5 - v25 = - - ‘, 

12 ~ )( 011 + v21) + 1X&,, - 022) + 9<3(&)(v13 + v23) 

+ 24r2(vl, - 024) + 125253 (J7w2 + u22) + 18&v,, - v23) + 4&v,, - v,,,) 

&= l 
48 C&d r 

i8L (&)(v12 + v22) + 24Mv,, - u2A + 245, (&(v,, + c2~) 

+ lR2tAv12 - v22) + 1x: (&h, + 023) + 15 C&h, + v,,)i 

Vl(j - V26 = 
us CJN - (015 - u25) 

6 

VI6 + 026 = - & (856 (J7C)(ull + 021) + 1@5(~12 - V22) + 1254 (Jnn)(O13 + 023) 

+ 32~dv14 - v2d + 305, (J4h5 + v2,) + 161’2<4(J~N~1~ + u22) + 48t2t3(v13 - u2d 

+ 24~: (Jdcv,, + v24) + 8t3 (Jav12 + v22) + st; (+)(v,, + v2d + 85;m2 - v22)~ 

57 = 42($n)rl 165, (Jn)(v12 + ~22) + 185dv13 - ~23) + 185, (Jn)(v,, + ~24) + 60<2(~,5 - ~25) 

+ 125254(~12 - ~22) + lK2t3 CJ~)CVI~ + ~23) + 36G(v1, - 024) + 6ti(v,2 - ~22) 

+ 6th - v23) + 36(%6 - 026) - th2 - ~22)) 

2117 + V27 = 
16u, - 15(v,, + v26) 
____ 

105 

v17 - v27 = - k. {@X7 (Jn)(vII + u21) + 120t6(v12 - 022) + 9ots (J7#u13 + v23) 

+ 2405,(v,, - c’24) + 22553 (&(~I, + u25) + 720t2(v16 - 026) + 1m25, (J7av,, + c22) 

+ 3605254(~13 - V23) + 3605(2<3 (Jn)(v14 + 02,) + @W2(~15 - 025) 

+ 120&t, (&)(u,, + 022) + lW:53 (&h3 + v23) + lfW3(~,3 - v23) 

+ 24w;h, - 024) + 12W25?(v12 - u22) + 1205ZL(~~ - vz2) - 4C(v12 - ~2~) 

+ 3w‘$,, - Z!23)1 

1 

5R = 1344 (JTC) r/ 
(16856 C&h2 + v22) + 5045,(v,, - u23) + 5M54(&(u14 + u24) 

+ 1@3W,(~,, - v25) + 1890t2 (Jn)(v16 + v26) + 336t25,(v12 - u22) 

+ 504525, (&(v 13 + v23) + 20165253(v,, - 024) + 126053: (&)(b + u25) 

+ 33653m2 - ~22) + 5~~:~3(%3 - v23) i- 2525; (&w13 + u23) i- w; (&ha i- ~24) 

f 1102’5 (&h7 + 027) - 1 l%;t3(%2 - ~22) - 2’4th3 - ~‘23)) 
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R&UIII& La solution en strie du probleme de la congelation unidimensionnelle a Ctt trot&e dans le cas 
oh la loi de refroidissement de Newton est valable sur la frontiere fixe. En utilisant une mtthode due a 
Portnov, on a obtenu la position mobile du front de changement de phase sous la forme de developpement 
en serie de puissances de Jt. Les coefficients jusqu’a la puissance n = 8 sont donnts. Les formules ont 
etC appliqutes a un exemple. Une estimation de l’erreur de troncature en fonction d’un paramttre sans 

dimensions a ttt obtenue. 

Zusammenfassung4lie Reihenlbsung fiir das eindimensionale Gefrierproblem liess sich fur den Fall 
fmden, dass Newton’s Abktihlungsgesetz fur die feste Berandung gilt. Nach einer Methode von Portnov 
kann der Ort der fortschreitenden Front der Phasenlnderung durch eine Reihenentwicklung nach Potenzen 
von Jt erhalten werden. Die Koeftizienten bis zur Potenz n = 8 sind angegeben. Die Formeln wurden 
fur ein Beispiel angewandt. Eine Abschatzung fur den Abbruchfehler wurde als Funktion eines dimensions- 

losen Parameters erhalten. 

hmoTaI(xisf-HonyseHo peIIIeHMe B BHAe CTeneHHOrO pRAa OAHOMepHOti 3aAaW AJlH CJfyYafl, 
KOrAa 3aKOH HbIOTOHa AJIH OXJIaHcAeHHH CnpaBeAJIllB Ha HenOABWKHOti rpaHllqe. PaC- 
IIpOCTpaHeHHe @pOHTaH3MeHeHMH #a3bl nOJIyW?HO B BMAe CTeneHHOrO pRAa n0 CTeneHRM d/t 
II0 MeTOAy HOpTHOBa. npMBOARTCH KO3+&i~HeHTbl YJleHOB CO CTeneHbH) A0 n = 8. npH- 
MeHeHHe @OpMyJl npOMnJIIOCTpI4pOBaHO npMMepaMH. nonyqeea 0qeHKa OrnI46KM BCJIeACTBclH 

OT6paCbIBaHHH WIeHOB B 3aBMCMMOCTGi OT 6e3pa3MepHoro ItapaMeTpa. 


